Healing Spinal Cord Injuries

نویسنده

  • Robin Meadows
چکیده

Unlike those in the periphery, nerve fibers in the central nervous system (brain and spinal cord) do not recover from traumatic injury. This makes disabilities from spinal cord damage permanent, with the severity depending on the location of the cord injury. Neck injuries can paralyze the torso and limbs, while lower back injuries can impair movement below the waist. The spinal cord is a bundle of long, thin fibers called axons that connect the brain to the body, and regrowth of these axons can be spurred by a variety of pharmacological treatments. In an effort to understand the basic mechanisms of axon regrowth, Ping Yip and colleagues report how a protein called neuronal calcium sensor-1 (NCS1) can help repair central nervous system (CNS) damage in rats. Previous studies have linked NCS1 to neuron survival, as well as to the outgrowth or sprouting of neuronal processes. This sprouting can occur on axons, which transmit neuronal signals, and on dendrites, which receive signals. Yip and colleagues have previously shown that axons can regenerate in CNS neurons that overexpress retinoic acid receptor b2, a protein that regulates cell growth, and also observed that this regeneration is accompanied by a rise in NCS1 protein. Here, Yip and colleagues further test the relevance of NCS1 to axonal regrowth in both cultured neurons and living rats. They begin by developing a method of increasing the expression of NCS1, and confirming this overexpression triggers sprouting in cultured neurons from adult rat brains. After treatment with a viral vector carrying NCS1 and green fluorescent protein (GFP), these neurons expressed five times the normal amount of NCS1 and sprouted abundantly. Labeling with a dendritic marker called microtubule associated protein 2 revealed sprouting on both axonal and dendritic projections. In contrast, untreated neurons hardly sprouted at all. To gain insight into the mechanism of NCS1-induced sprouting, the researchers investigated the role of a pathway (P13K/ Akt) that regulates cell growth and proliferation and increases neuron survival. They found that cultured neurons that overexpress also have high levels of phospho-Akt protein, indicating activation of the P13K/Akt pathway. Furthermore, blocking this pathway in NCS1-transduced neurons led to a drop in both phospho-Akt levels and neurite sprouting. To see if these findings also hold for CNS neurons in living rats, the researchers injected the NCS1-GFP vector into the region of the cerebral cortex that controls limb movements for only one side of the body. The right half (or hemisphere) of the cortex contains neurons that control movement on the left side of the body, while the left hemisphere controls the right side of the body. Axons from each hemisphere of the cortex form the pyramidal tract in the base of the brain and then enter the spinal column. Like the brain, the spinal cord also has two halves, each of which controls one side of the body. Three weeks after the NCS1-GFP vector injection, the neurons and axons expressing high NCS1 levels were completely GFP-labeled all the way from the cortex to the spinal cord. The researchers then severed the pyramidal tract on the other side, denervating the untreated half of the spinal cord while leaving the treated half intact. Six weeks later, nerve fibers from the intact side of the spinal cord had extended into the injured side, confirming that NCS1 overexpression boosts axon sprouting in whole animals as well as in cell culture. To determine whether this new sprouting actually translated into rescue of motor behavior, the researchers next asked how well NCS1-transduced rats could use their limbs on the injured side. One behavioral test required rats to use their forelimbs to reach for and grasp food pellets. Two days after their spinal cord injuries, the NCS1transduced rats could hardly get food pellets with their affected forelimbs. But within 21 days, they grabbed food pellets as handily as uninjured rats. The other behavioral test assessed how well rats could walk on the wires of a mesh. Soon after their spinal cord injuries, NCS1transduced rats were quite clumsy at navigating the grid with their affected limbs. But within 21 days, they were as surefooted as uninjured rats. Finally, the reserachers tested whether NCS1 transduction after spinal injury would also lead to substantial axon regrowth and behavioral recovery. They found that NCS1 overexpression has much the same benefits when begun two days after injury as when begun beforehand. Encouragingly, these benefits include new fibers extending from the intact side of the spinal cord into the injured side as well as regeneration of fibers on the injured side. The combination of anatomical and behavioral recovery makes this work particularly promising, suggesting that therapies to increase NCS1 levels may someday help people recover from spinal cord injuries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systemic Effects of Experimental Spinal Cord Injury on Bone Healing in Rabbit

Bone loss after spinal cord injury leads to increased fragility of bone and subsequent risk for low-trauma fractures in the sublesional parts of the body. Although in such injuries upper limbs are normally innervated, bone loss may occur in the upper extremities. The present study was designed to determine the systemic effects of spinal cord injury on the fracture healing of upper limbs in rabb...

متن کامل

Membrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration

Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...

متن کامل

Membrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration

Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...

متن کامل

Bone Healing and Hormonal Bioassay in Patients with Long Bone Fractures and Concomitant Spinal Cord Injury

The increased rate of fracture healing and abundant callus formation of long bone fractures in patients with concomitant severe acute traumatic head injury is a well-known orthopedic phenomenon, Few studies, however, have reported these phenomena being induced by acute traumatic Spinal Cord Injury (SCI). There is also a well-established clinical relationship between spinal cord injuries and het...

متن کامل

Macrophage activation and its role in repair and pathology after spinal cord injury

The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of...

متن کامل

Review of studies on Mechanical Performance of Spinal Cord in Traumatic Injuries

Considering the extent of the disability caused by spinal cord injury and the increasing incidence of it, many attempts have been made to understand how this lesion is repaired. Most of the spinal cord injuries are traumatic injuries. The annual incidence of this damage is estimated between 15-40 cases per million people worldwide. Considering the extent of this incident, the need for study of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2010